Archives

  • 2018-07
  • 2018-10
  • 2018-11
  • 2019-04
  • 2019-05
  • 2019-06
  • 2019-07
  • 2019-08
  • 2019-09
  • 2019-10
  • 2019-11
  • 2019-12
  • 2020-01
  • 2020-02
  • 2020-03
  • 2020-04
  • 2020-05
  • 2020-06
  • 2020-07
  • 2020-08
  • 2020-09
  • 2020-10
  • 2020-11
  • 2020-12
  • 2021-01
  • 2021-02
  • 2021-03
  • 2021-04
  • 2021-05
  • 2021-06
  • 2021-07
  • 2021-08
  • 2021-09
  • 2021-10
  • 2021-11
  • 2021-12
  • 2022-01
  • 2022-02
  • 2022-03
  • 2022-04
  • 2022-05
  • 2022-06
  • 2022-07
  • 2022-08
  • 2022-09
  • 2022-10
  • 2022-11
  • 2022-12
  • 2023-01
  • 2023-02
  • 2023-03
  • 2023-04
  • 2023-05
  • 2023-06
  • 2023-07
  • 2023-08
  • 2023-09
  • 2023-10
  • 2023-11
  • 2023-12
  • 2024-01
  • 2024-02
  • 2024-03
  • 2024-04
  • OHC is a potent regulator

    2021-06-19

    25-OHC is a potent regulator of LXR-mediated pathways, that impact on 5 aza 2 deoxycytidine lipid homeostasis [8]. This oxysterol affects expression of the cholesterol efflux pumps ATP-binding cassette transporter (ABC)A1 [9] and ABCG1, and expression of apolipoprotein E [10], [11], [12]. 25-OHC is able to stimulate LXR-independent oligodendrocyte apoptosis and suppresses myelin gene expression in peripheral nerves via LXR/Wnt/β-catenin-mediated pathways [13]. LXR-mediated pathways interfere with cholesterol metabolism and, therefore, it is not surprising that oxysterols in the micromolar range are able to inhibit cancer cell proliferation including glioblastoma [14], breast [15] and prostate cancer cells [16] as well as prostate cancer xenografts [17]. LXR agonists interfere with several cell cycle checkpoints inducing cell cycle arrest and phytosterols (plant LXR agonists) were suggested to reduce the incidence of colon cancer [18]. 25-OHC can further act as a negative regulator of sterol regulatory element binding protein (SREBP)-dependent pathways by binding to insulin-induced gene 1 and 2 anchor proteins (Insig1 and -2) thereby inhibiting proteolytic activation of SREBPs [19]. In vitro studies further demonstrated that 20(S)-OHC may also interact with membrane receptors, activating the Hedgehog signaling pathway via binding to the oncoprotein Smoothened [20]. In a similar manner 25-OHC promotes medulloblastoma growth via activation of the Sonic Hedgehog pathway [21]. Conversion of 25-OHC to the more polar 25-OHC-3-sulfate by tumor cells decreases LXR affinity and exerts LXR antagonistic properties via peroxisome proliferator activated receptor (PPAR) γ activation [22] leading to increased tumor cell growth and tumor immune escape [23]. Glioblastoma multiforme (GBM; astrocytoma grade IV) is the most common and malign primary brain tumor with a mean survival of 14.6 months even under current maximal therapy including surgery and combined chemo- and radiotherapy [24]. Only recently it was demonstrated that the mutated epidermal growth factor receptor (EGFR) present in a high percentage of GBMs overcomes normal cell regulatory mechanisms to feed large amounts of cholesterol to brain cancer cells [13]. We have shown that EGFRvIII upregulates SREBP1 cleavage [25] and low-density lipoprotein receptor expression, thereby promoting cholesterol uptake, which favors growth and survival of GBM cells [14]. This pathway, which renders tumor cells exquisitely sensitive to LXR agonist-mediated apoptosis [13], could also feed excess cholesterol into the oxysterol synthesis pathways. Oxysterols modulate the immune responses and as such could be effectors of the tumor environment: 25-OHC impairs IgA production in B-lymphocytes [26] and induces the secretion of the proinflammatory and angiogenic cytokine IL-8 [27], [28]. Of note, oxysterols (in particular 7α,25-OHC) are potent chemoattractants for immune cells via Epstein-Barr virus-induced G protein-coupled receptor 2 (EBI2; also termed GPR183) [29], [30]. Besides regulating normal function of the immune system this 5 aza 2 deoxycytidine pathway might be of importance in the tumor environment, contributing to chemotactic recruitment of monocytes across the tumor vasculature and subsequent deposition of tumor-associated macrophages. The present study aimed at investigating CH25H expression on mRNA and protein level in two GBM cell lines with different in silico CH25H mRNA expression (http://biogps.org). We explored the effects of TNFα and IL-1β (cytokines secreted by GBM cells [31], [32], [33]) on CH25H transcription and translation, and quantitated its product 25-OHC by GC–MS analysis. Using THP-1 and primary human blood monocytes we studied the effects of exogenous 25-OHC and GBM-conditioned medium on cell migration, since monocyte-derived macrophages are known to contribute to increased aggressiveness and invasiveness of glioblastoma [34]. Finally, the involvement of the G protein-coupled receptor EBI2 in 25-OHC-mediated migration of THP-1 cells was investigated.